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It is shown that in the general case the contact pressure has a square root singularity at 
the interface of the boundary conditions. This singularity is extracted from the solution. 

A Fredholm equation of the second kind is obtained for the bounded additive part of the 
contact pressure, which is solved by an asymptotic method. As an illustration, the prob- 
lem of a heavy sphere with a spherical rigid foundation of similar radius is solved nume- 

rically. A comparison is made with the Hertz solution. 

Hertz n, 21 posed and solved the problem of the contact of elastic solids under the 
assumption that the contacting bodies can be replaced by elastic half-spaces for small 

domains of contact. 

The contact problem for a sphere with a given interface of the boundary conditions 
(a stamp with angular points) is reduced in [3, 41 to the determination of certain coef- 
ficients in the dual series-equations containing Legendre polynomials; a method is indi- 

cated which permits reduction of the solution of the obtained dual series-equations to 

the solution of infinite systems of linear equations. 

Contact problems (including the problem with a previously unknown interface of the 
boundary conditions) are investigated below on the basis of the closed solution of the 

first boundary value problem for a sphere obtained in [5]. 
It can be shown [5] that the axisymmetrical loading normal to a sphere r = R 

3, = N (e) for r=R, O<O<n 

produces the following radial displacements on this sphere 

The function u in the kernel of (2) is expressed in terms of complete elliptic inte- 

grals of the first kind K (/i) and is the following: 

U (L/J = IT (y, 8, a) = 9 - + (1 f- y co3 8 co3 a) 

l&2=(1 --y)“+4ysin?qq ,$?h? = 4y sin 8 sin x 

The constants A and h in (2) depend only on the Poisson’s ratio Y and are given in 
the form 

A=8Y2_8v+1+i 16v3-i5v2-4vf5 , 
1/m 

let us consider the problem of impression 
tric foundation given in the spherical (r, 8, 

equation (Fig. 1) : 

of a sphere r < R into a rigid axisymme- 
cp) coordinate system by the following 
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r =-- R [l + p @)I, p (0) =- 0 (5) 

It is assumed that the sphere is free of shear stress resultants and is deformed under 
the effect of the normal loading 

OW for r<e<n 
N @) = I 0 (0) for 0 < 0 < 7 (6) 

where Q (0) . IS lven and IJ (c)‘is the required con- g’ 

tact presstie. 
The circle 8 = y on the sphere r = R bounds 

the domain of contact. The problem is solvable under 

the condition 
Y 

c 

z 
6 (a) sin a cos a dct = - - 2nRZ (7) 

(; 

where 2 is the equivalent external pressure Q (0). 
The condition of contact between a sphere and the 

stamp (5) can be written in the form 
(8) 

Fig. 1 u (0) = R I- a cos 8 + p @)I, o<e<y 
where 4 is the approach beteen the stamp and the center of the sphere. 

Substitution of the boundary conditions (6) and (8) into (1) results in an integral equa- 

tion in the contact pressure 

Here u (0) denotes the following function given to the accuracy of (1 
,. 

u (0) =I R 
/ 

- a cos 8 + p (0) - &s Q (x) H (0, a) sin a dz] (10) 
Y 

Let us convert (9) into a Fredholm integral equation of the second kind. Let us make 
the change of variables 1.g ‘i&j El, tg ‘/,CX =- Et, e ig ‘i, y 

Moreover, let us introduce the notation 

Here 
0 

0’ (5) = u (2 arc tg EX), u” (x) = v (2 arc tg EZ) 

U” (Y) = U” (Y, 2, t) = C-7 (y, 2arc tg EZ, 2 arc tg et) 

After the manipulations mentioned, (9) becomes 

1 

c [ Q (t) __+(~) ++s(x, t)]dt= -+@), O<z<l (12) 
<. 
0 
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The equilibrium condition (7) is hence rewritten as 
1 

s Q (0 (I - w t 
(1 + ewp 

& = _ $_& 
0 

(13) 

Let us note that the axisymmetric contact problem for an elastic half-space results 
in the integral equation 

1 

5 4 (1) 2+q2g)dkf(x), O<x<l 
0 

(14) 

The solution of this equation in quadratures is given in [6] as 

Ihx Af (J/l _ (1 - 52) sina ‘II, sin E) x 

where 
x sinqsincrda (15) 

Af (t) = + f’ (t) + f” (0, 
1 j'(1)& 

c = 4 If (0) + i viT] Uf? 

0 

It can be shown that (15) admits of an equivalent representation 
1 

!I(4 = r/&2 - $ i Af (t) L (5, 2) dt 

L (z, 0 = -& 

(17) 

(18) 

Let us note the following property of the incomplete elliptic integral of the first kind: 
.x 

dt 
F @, x, = c JL(1 - 12) (1 - kV) 

CY 

_+F(+,kx) (19) 

It aids in establishing that 

XL (5, t) = 2L (t, x) (20) 

Let us continue the investigation of the integral equation of the first kind (12) by the 

method of regularization. Let us consider the integral in the right side of (17) as an 
operator, and let us act on it on the left with (12). We then obtain an equation equiva- 
lent to (X2) 1 1 

4 (4 -&S q (t) B (5, t) dt = 
0 

v&d - & 1 Aw (t) L w, t) dt 
0 

where 

O<x<l (21) 

1 1 
B (2, t) = [[T S,’ (z, t) ,f S,,” (G t)] L (2, 2) d.z (24 

0” 

Let us introduce a function p (5) into the considerations such that 

It is the solution of a Fredholm integral equation of the second kind 
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P (4 -- y& @)B(x, t)dt =g(x), O<.c<l (M) 

‘, 

s(x) = - \Aio(t)L(x, t)dt + cc’ %!-dt 
; 

o’! Jfi-12 

Condition (13), which can be written according to (23) as 

i 2 arctg e c--- 
1 1 1 + E2 & 

dt = - 

is used to determine c . 

Substituting (23) into (12) and taking into account that 
E 

W (0) = - 2~ - --$- 
c 

Q (z) H (0, x) sin x dr 

; 

we obtain the connection between the approach a and the factor c 

U’(0) = c[T -+ i ;g df] + f cp (t) [2x + -$ S (0, t,] dt (28) ~ 

It can be shown that the kernel B (5, t) is bounded for t ~# z and has a logarithmic 

singularity at t = 5. As is customary, let us assume that w (z)Ec2 in the segment 

[O. 11. Then g (x&C in [O, 11. 
The kernel B (5, t) is square integrable in the set of variables 5 and t - 

S~,B(s:t),ldzdt=bl-:a, Y 
and moreover “” I 

IjlB(r, t)I’dt<T ‘:a~ 
0 

Furthermore, the kernel H (s, t) is continuous in z in the large [‘I] in the segment 

CO, 11. 
According to the properties listed for the integral equation (24), its solution p (X)Ec: 

in [0, l] and because of the theorem of I. Shur, for t: < flirt2 b it can be represented by 
a uniformly convergent Neumann power series in E, where the series converges no more 

slowly than a progression with the denominator ~6 / t)13t’L according to p]. 
let us turn to the solution of the integral equation (24). 

It can be shown that the function S (x, 1) in (11) is representable by the following 
convergent series for F < 1, (1 < -z, t < 1 : 

s (x, t) := t [ 5 f,, (x, f) e” +- Ill t: 5 g2,> (5, 1) e”’ (29) 
II 0 1, _,, 

where /IL (J, 1) and g,,, (.r, t)are continuous functions with an integrable second deriva- 
tive. In particular 

f, (.r, t) : ‘/,c, (2 -t P) 111 max (.r, tj -+ (1i,x - l/,c,) mas (,x2, t2) + 
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+ V&s (x2 + t”) 
go (J4 t) = - x, g, (.2., t) Y=z ‘/4c2 (x2 + t2) 

Here E (k) is the complete elliptic integral of the second kind, and the coefficients 

ci are expressed in terms of the constants A and h in (4), as follows: 

1 1-22v 
cg = 2 -1 T \> - - r, (1 -2’) ,- f Rc /i i “,,,1 &/ 

c1 = ‘ie5t 1Re A (Z - h) - 3x1, c, = 10x - i Re A (2 - h) (1 + a) 

cy = - 2c,, -{- I6 (1 - v) -,- 20x, - 4 Re A (2 - a> - 
I J-h 

- 4 R c~ A 
s 

!I- - 1 - (2 - ib) (,I/ - 1) - I/? (:! -X) (1 - h) (j/ - 1)2 

i 

1 
P_ 

!I (1 - yy 11 d/I 
0 

, s 

where 
x = (1 - 2x7) 2 

Substituting the series (29) into (22). we obtain an analogous expansion for the kernel 

of the integral equation 

B (cc, t) = 5 F, (5. t) E’~ -I- 111 t: 5 G2,% (5, t) t.2’1 
n==o 

(X,) 
U-1 

where 
.- 

F, (s, t) = - x L (x, t), G2 (z, 1) = c,t//l - J” 

F, (5, t) = t {c3 vmr_ $- c, i In max (s, f) L (x,. s) ds A- 
0 

++L(x, t) j-&(s--)L(x, s,ds]} 
0 

Here h (2) is the Heaviside function. In order to be sequential, let us also expand the 
right side g (z) of the integral equation (24) in a series of the type (29). 

As is usual, let us assume that the right side of the initial equation (12) is representable 

in the neighborhood of the point x = 0 by the series 

w (5) = - a 2 + 5 (--1)” I.3 ... y--;y + *n) ( ,g] + 5 A,, (42n 
[ 

(32) 
n=1 ?L=O 

which is uniformly convergent for E < 1 . 
The coefficients A?,, are determined by the given external loading Q (0) and the 

shape of the stamp, and are independent of the approach a. 
Substituting (3.2) into the first integral in (25), we obtain 
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where the E, (x) are Jacobi polynomials. 
The formula 1 

c 

-- 
t 

;i 

2n-’ L (5, t) dt = 2 & A?$,_~ (x-) 1/i - x2 

utilized in deriving (33), was obtained after some manipulation and a comparison with 
the results in [8, 91. 

Substituting its corresponding series (30) in place of B (x, t) into the second integral 
of (25). we obtain 

In particular 

M, (1) = - r,J, (4, M, (z) = c1n2 1/l - 29 

J/i, &) = (cs + 2q/Q - 52 + 3t IJ, (x) - 3Js (41 -t CL? [Jz (4 - J3 (41 

N, (x) = c,l/l 

Here 

J1 (x) = s ;s d4 J,(x)=\III@ + ~I--t”)L(z, f)dt (7%) 
0 0’ 

J, (2) = s 1/l - t”L (x, t) dt, J4 (x) =f f (1 - tq)3’2 L (5, t) dt 
0 0 

An asymptotic representation of these integrals as x -+ 1 is easily obtained 

JIG4 - - -fj_ _ x” ln 1/-J, Ji - ki VI - x2, /ii = COnSt , i .= 2: 3, 4 

The integrals (35) reach a maximum at x = 0 

Jl (0) = f/*3?, J, (0) = “i8z2 - 2 + In 4 

J, (0) =:: l/,& + V4, J, (0) = 3is,n2 + V4 

To solve the integral equation (24). let us substitute the series (30), (33), (34) therein 
and let us apply the asymptotic method of Vorovich and Aleksandrov [lo], The form 
of the solution is at once established. 

Let us note that the constants c and a are linear in the right side of the integral equa- 
tion (24). Because of the linearity of the equation they will also be linear in the solu- 
tion of (24). It is hence convenient to separate the solution into two parts. 

First we assume that the right side of (24) is 

We denote its co~esponding solution by 
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P0 (5) = - 4A, - 5 pn” (5) E” + 5 $j p”,, n (2) e~n+m-llnn e] 
1 (36) 
*=I) n=1m=0 

By the method set forth in DO] we obtain 

PO0 (4 = P1° (z> = POo, n (4 = POl, ?I (z) = $2, n (z) = 0 

pz” (x) = v/1 - 29, p;(x) = - & J, (x)7 P03,1 (4 = g$- vi - 2 

P4O (z) = $ -$ f/i E, (~3) + -$- [ 1 - + El (x2)] 1/m + 
1 

Furthermore, we set the right side of the integral equation (24) as 

g(x) = i ;Ea dt 

0 

We denote its corresponding solution by 
00 00 Lx 

PO (x) = 2 qn (X) En i- 2 2 qm, n (2) 12~“+~-l In” E 
n=o n=lm=o 

(38) 

Exactly as above we obtain 

1 

q. (.I.) = - xJ, (z), q1 (x) = cgc2 1/i - x2 -t & 5 JI (t) L (a, t) dt 

!?z(x) = (c3 + 2%) 0 -x2 +x[Jl(z) - 3J,(z)] + c2;J,(r) -Jo, - 
1 1 

-x$+3(x) + f \ds L(.r, s)SJ1(t) 

I, 
-&Kjsjdt] - 

0 

2.9 l ---ldtL(z-, t)iJ&)L(t, s)ds 
(olny 

0 0 

qo,1(4 = CP vi - x2 

Therefore, the solution of the integral equation (24) with the right side (25) is repre- 
sentable as 

P (4 = UP* (4 + P0 (4 + CPO (4 (3% 
where the functions with the asterisk should be evaluated by means of (36), (37) by insert- 
ing therein Azn= (_l)n-11'3'...'(~~_Tnl!)(i+4n) 
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Substituting the solution (39) into the conditions (26) and (28) and taking account of 
(27), we obtain a system of two linear algebraic equations in the constants c and n. 
The problem can be considered solved. 

In order to obtain the solution of the contact problem in the class of bounded functions, 
we should set c = 0 in (23) and (39). The formula for the approach (28) is hence sim- 
plified and becomes 

Substituting in this relationship the corresponding series for p”, p* and S (0, t) we obtain 

Up to now the unknown boundary of the domain of contact (c’ = tg li,y) is defined 
by the condition (26) in which we must set c = 0, Taking account of (39) and (40), 
we obtain 

II 

Limiting ourselves to the first terms in (36), (40) 
the problem of impression of a parabolic stamp 

into an elastic haIf-space. 
It should be noted that the solution of the 

Fig. 2 

and (41), we obtain the solution of 

Fig. 3 

integral equation (24) constructed above can be obtained by successive approximations 
with subsequent grouping of terms having the same order of smallness in E. 

As an illustration, let us examine the problem of the contact between a heavy elastic 

sphere I’ < R of density I) and a spherical stamp of similar radius r . : iI (1 -I- A). It 
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is easy to find the particular solution of the elasticity theory equations corresponding to 
the mass forces K = Pge, 

1-,2v pg ~ __ ?I, = -r? cos 6 i_ _~ v 4G p 
I- “v pg 

Us = - r! coi 6 -- _T 1*-v 4c 

The corresponding stresses are 
5 p 1 sa = GW = - r cos 6 pp, T ,B- 0 

It can be shown that z 

c cos r H (6, a) sin CI da = 0, O<@<X’ 
; 

Therefore, the problem is reduced to solving the integral equation (9) with the right 
side LJ (6) = --a CDS 0 + vi + 2A + Aa cos 8 - 1 - A cos 6 

1 - 2v pgR 
a=a0-j-jq-i 

where a0 is the approach between the stamp and the center of the sphere. 

The solution is given by (39)-(41) in which we should take 
4A 

Ao=O, 
A4 

A%=------- -- 
1 3$-4A-As 

1+A 5 Aa --z (i+A)s 

Presented in Fig. 2 is the dependence (41) for v = 0.3, A = 0.001. Given in Fig. 3 is 

the contact pressure distribution when the angle of contact is 2y = 60”, the angle 6 is 

laid off on the horizontal axis, while along the vertical the quantity 

is plotted. 
The dashed curves in both figures refer to the Hertz solution. A comparison shows that 

for large domains of contact (v > 30”) the Hertz solution, obtained under the assumption 

that the contacting bodies can be replaced by half-spaces, results in considerable errors 
(6 > 20%). 

The author is grateful to L, S, Barkov for taking on the task of performing all the neces- 
sary computations. 
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